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Classical model checking

• Verify if a model satisfies a specified property
• model
 a dynamical system

 hardware circuits
 Programs
 …..
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Classical model checking

• Properties:
 Assertions about the executions 

(trajectories) of the dynamical 
system.

• At some time in the future the 
program will terminate (ϕ1)

• Starting from now at every time it 
will be the case that x1 + x2 = 100 
(ϕ2)

• l1: Input x1, x2 
• l2: while x1 > 0:

x1 := x1-1; x2 := x2+1

• l3: stop
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Classical model checking

• Model satisfies a property if 
every run/execution of the 
model satisfies the property.

• At some time in the future the 
program will terminate (ϕ1)

• Starting from now at every time 
it will be the case that x1 + x2 = 
100 (ϕ2)

• l1: Input x1, x2 
• l2: while x1 > 0:

x1 := x1-1; x2 := x2+1

• l3: stop

ϕ1 is satisfied by the program

ϕ2 is not satisfied by the program
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Classical model checking

• Properties:
 specified as temporal logic formulas

• At some time in the future the 
program will terminate

F(l3)

• Starting from now at every time it will 
be the case that x1 + x2 = 100 

G(x1+x2 == 100)
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Classical model checking

• Properties:
 specified as temporal logic formulas

• future (F), always(G), until (U), next (X)
• and, or , not ….

• Precise
 (machine readable) syntax
mathematical semantics
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Classical model checking
• Properties:

 specified as temporal logic formulas

• future (F), always(G), until (U), next (X)
• and, or , not ….

• Precise
 (machine readable) syntax
 mathematical semantics

• The model checking problem can be solved 
automatically!
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Probabilistic  model checking

• Verify if a model satisfies a specified property with a certain 
probability.

• Models:
 Stochastic dynamical systems

 Discrete time Markov chain
 Continuous time Markov chain

• Model satisfies a property with probability p if:
 the probability of a randomly chosen run/execution of the model satisfying 

the property is p.

• This is hard problem!
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Statistical   model checking

• Probabilistic model checking via:
 sequential hypothesis testing.

• H0: P(ϕ) ≥ r  (null hypothesis)
• H1: P(ϕ) < r  (alternative hypothesis)
• r chosen by the user.
• User also fixes 
 α - false positives probability
 β - false negatives probability

• These parameters determine the thresholds L and U 
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Statistical model checking

• ϕ – “within two steps the state F 
will be reached”

• H0: P(ϕ) ≥ 0.8
• H1: P(ϕ) < 0.8 
• α = β = 0.05
• L, U
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Statistical model checking

• ϕ – “within two steps the state F 
will be reached”

• Suppose m sample trajectories 
have been drawn so far 

• and the test ratio value Km lies 
between L and U

• Draw one more sample 
trajectory σ.
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Statistical model checking

• If σ satisfies ϕ, increase Km to 
Km+1

• else decrease Km to 
Km+1

• If Km+1 > U accept H0 and stop
• If Km+1 < L accept H1 and stop
• Else draw one more sample and 

repeat.
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Statistical model checking

• The hypothesis test is guaranteed to terminate with probability 1.
• Surprisingly few samples need to be drawn in practice
• Complexity depends on the hypothesis test parameters only
 Cost of drawing  a sample will depend on the dimension of the system.

• Amenable to parallel implementation
• Scales well
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Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on timebounded
properties. Inform. Comput. 204, 1368–1409 (2006)



Goal
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• Apply the SMC method to analyze:
• ODEs based models of biochemical networks.

• Parameter estimation
• Sensitivity analysis
• Model check (probabilistically, approximately) for properties.

• Assume a set (interval) of initial values:
• For the variables 

• Assume distributions over these sets of initial values.

E + S ES E + P
k1 

k 2

k3 



SMC for ODEs
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• Assume a set (interval) of initial 
values:

• For the variables 
• Assume for now all the rate 

constants  are known
• Assume distributions over 

these sets of initial values.
• Uniform
• Normal
• Log uniform
• lognormal

t0

IN



𝑃𝑃 ψ =
#𝑇𝑇𝑇𝑇𝑇𝑇ψ
#𝑇𝑇𝑇𝑇𝑇𝑇

=
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ)
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇)

𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ = 𝜏𝜏 0 𝜏𝜏 satisfies ψ 𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏 0 𝑖𝑖𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇}

INIT
𝑇𝑇𝑇𝑇𝑇𝑇ψ

TRJ

𝑇𝑇𝑇𝑇𝑇𝑇ψ = { 𝜏𝜏 | 𝜏𝜏 satisfies ψ }

ψ a BLTL formula



𝑃𝑃 ψ =
#𝑇𝑇𝑇𝑇𝑇𝑇ψ
#𝑇𝑇𝑇𝑇𝑇𝑇

=
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ)
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇)

𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ = 𝜏𝜏 0 𝜏𝜏 satisfies ψ 𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏 0 𝑖𝑖𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇}

𝑇𝑇𝑇𝑇𝑇𝑇ψ = { 𝜏𝜏 | 𝜏𝜏 satisfies ψ }

INIT
𝑇𝑇𝑇𝑇𝑇𝑇ψ

TRJ

P(ψ) is well-defined because:
• The assumed continuity properties of the ODEs system
• BLTL semantics
• Basic measure theory

𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ



INIT

𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ

𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ = 𝜏𝜏 0 𝜏𝜏 satisfies ψ }

𝑃𝑃 ψ =
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ)
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇)



𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ = 𝜏𝜏 0 𝜏𝜏 satisfies ψ }

𝑃𝑃 ψ =
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ψ)

𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)
=  P(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ)

• We can estimate P(ψ) by:

 Estimating P(INITψ)

 Using the given distribution 
over INIT

INIT

𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ



𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ = 𝜏𝜏 0 𝜏𝜏 satisfies ψ }

𝑃𝑃 ψ =
𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ψ)

𝜇𝜇(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)
=  P(𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ)

• Use SMC to estimate P(INITψ) 

 Sample a point x0 from INIT

 Generate a trajectory σ starting 
from 

 Check if σ satisfies ψ

 .....

For an ODEs system:
Given a distribution over the initial values sets
We can estimate/bound the probability of the system satisfying the property ψ

INIT

𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇ψ



Parameter estimation

• Given an ODEs  system:
 Assume distributions over initial values sets
 Assume distributions over intervals of values for unknown parameters
 Encode quantitative experimental data and known qualitative properties as a 

conjunction of BLTL formulas.
 Use SMC to evaluate the objective value of the current set of parameters
 Use standard search techniques to traverse the parameter space.
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Data encoding

• Quantitative experimental data
 At time t the value of the variable x was observed to lie in the 

interval [l, u]
 Ft(l ≤ x and  x ≤ u)

 Ψexp – the conjunction of all such data point formulas.
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Data encoding

• Known Qualitative trends
 ERK concentration reaches a peak value and then drops of to a low  value  

for good.
 F([ERK] > 4.8 and F (G([ERK] ≤ 0.2))

 transient/sustained activation, oscillatory behavior, bistable, … 

• Ψqlt - the conjunction of all qualitative properties.
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SMC based Parameter Estimation
1. Guess θl

2. Verify                    with the chosen strength
3. Compute F(θl)
4. Terminate or make a new guess (based on 

SRES) and repeat step 1 

qltyψψ ∧exp
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MLC Phosphorylation Pathway
• Regulates the contraction of endothelial cells
• ODE model (Maeda et al 2006)

• 105 species, 197 parameters (100 unknown parameters)

• Synthetic training data
• Time serials: 10 species, 20 time points
• Qualitative trend: 2 species

• Synthetic test data
• 2 species, 12 time points

Maeda A1 et.al. Ca2+ -independent phospholipase A2-
dependent sustained Rho-kinase activation exhibits all-or-
none response. Genes Cells. 2006 Sep;11(9):1071-83

https://www.ncbi.nlm.nih.gov/pubmed/?term=Maeda%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16923126
https://www.ncbi.nlm.nih.gov/pubmed/16923126


MLC Phosphorylation Pathway

Training data Test data
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TLR3-TLR7 Pathways Modeling
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Liu, B., Liu, Q., Palaniappan, S., Bahar, I., Thiagarajan, P.S., 
Ding, J.L.: Innate Immune Memory
and Homeostasis May Be Conferred Through TLR3-TLR7 
Pathway Crosstalk. Sci. Signal.
9(436), ra70 (2016)

• TLR3 activation followed by TLR7 
activation leads to synergistic 
production of cytokines

• Investigated the cross talk
mechanism causing this synergy



Model Calibration using Training Data 
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Experimental data
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• Test data: [IL6mRNA], [IL12mRNA] at {0, 4, 8, 12, 16, 24, 28, 32, 40, 
48 h} 

Model Calibration and Validation
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The main findings
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The JAK-STAT1/2 pathway is the main mechanism
responsible for the induction of synergistic
cytokine production

The cytokine response is biphasic due to an incoherent type I 
feedforward loop



QSP model of Sanofi’s bispecific antibody
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• SAR440234 is a bispecific 
antibody 

• capable of co-engaging the CD3 
receptor on T cells and 

• the CD123 receptor 
• highly expressed on AML blasts

• Two level model to capture:
• PK dynamics
• Synapse formation
• Killing of Cd123+ cells (AML blasts)
• Cytokines release

Drug

V2

Q

Drug

CL

CD123

CD3

CD3 cells

CD123 
cells

Synapses
CD3 

active

Drug-CD3

Drug-CD123

kADA

Bone 
marrow

V1

Bridges

T cell cytotoxicity
Killing

infusion

Synapse formation

Blood

IL2

IL6

IL10

IFN𝛾𝛾

Timothy R. Lezon, James R. Faeder



Going forward
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JR Faeder, unpublished

 Add the SMC based method to the 
BioNetGen toolkit

 Current solutions:  PTEMPEST, 
BioNetFit, SBML tools



Going forward

The decomposed AKT-MAPK signaling pathway

• Decompositions based parameter 
estimation

• Decompose the model into its maximal 
strongly connected components

• Use the resulting DAG to guide the 
parameter estimation procedure. 

• Estimate the parameters of the upstream 
components first

• Complications:
 Distribution of experimental data
 Computing consistent global 

estimates from local ones.
 Belief propagation



Going forward

• Network based based parameter 
estimation

• Estimate the parameters of the 
components individually

• Compute consistent global estimates 
from local ones.

 Belief propagation
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